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ABSTRACT 

Recently IDM Corporation h.is declassified an alnorithn 

for encryption usable for computer-to-connuter or 

conputer-to-terminal conmunications. Thoir alqorithn wa> 

inpleinented in a hardware device called Lucifer. A software 

inplonentation of Lucifer for Flultics is described. A proof 

of the aloorithn's reversibility for decipherinq is 

provided. A special hand-coded (assenblv lanquaqf.-) version 

of Lucifer is described whose qoal is to attain perrornance 

as close as possible to that of the hardware device. 

Performance measurenonts of this proqran are qiven. 

Questions addressed are: How complex is it to implement an 

aiaorithm in software desiqned primarily for digital 

hardware? Can such ■ proqram perform well enouoli for use in 

the I/O system of a larqe tine-sharinq svsten? 

Author: 6« Gordon Benedict 

Thesis Supervisor: Prof. Jerome H. Saltzer 
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OVERVIEW 

\ 

This thesis examines the encipherinq alcorithm recently 

released by IBM, Lucifer. This alqorithm is described as a 

hardware mechanism in "The Desiqn of Lucifer, a 

Cryptographic Device for Data Communications*', by J. Lynn 

Smith; this was the primary source document. 

A proof of Lucifer's reversibility is given, that it 

will in fact correctly decipher its previously-output 

ciphertext when provided with the same key used for 

enciphering. Two software implementations are described and 

their performance measured. 

This paper is  divided into five  sections  and  four 

appendices.   "Introduction to Enciphering" briefly explains 

the  uses of enciphering  in  computer-to-computer  and 

computer-to-terminal   communication   as   a   security 

enhancement.   "Enciphering  Algorithms  anu  Lucifer  in 

Particular" lists some criteria for a good computer-oriented 

cipher.   The general  operation of Lucifer  is depicted 

without much detail.  Sufficient detail is however given for 

, understanding  of   "A  Simple   Proof   of   Lucifer's 

\Reversibility".   This  section provides  an informal proof 

Vliat Lucifer works in that it correctly deciphers  its  own 

ciphertext.    "The   Multics  Software   Implerne"Laiion" 

demonstrates how to use the enciphering pr'»qr^r.rf.  The final 

section,  "Timing  and Conclusions",  presents performance 

■I mmamtmmti^^»^. 



An Enciphering Module for Multics page 7 

measurements of  a  PL/I  ar.-i  a  Multics assembly language 

version of Lucifer.  Appendix A, "Operation of  the  Lucifer 

Hardware",  details  the  operation of  the hardware device 

described by Smith.  Appendix B, "The PL/I  Implementation", 

derails  a software version in the PL/I language designed to 

simulate closely the Lucifer hardware in its operation and 

be  readable  and exportable.   Appendix (,,     "The Assembly 

Language  Implementation",  details  a version of  Lucifer 

optimized  for execution time.  For those readers unfamiliar 

with the  Multics hardware,  "An  1 Production  to  Multics 

Assembler"  briefly explains those features of the Honeywell 

model 6180 processor used by Lucifer. 

MMMi —___»_-_ 
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1NTP0DUCTION TO ENCIPULRINC 

Much attention has been paid recently to copnuti»r and 

data security. Computer security consists of rcqul^ting the 

use of computer facilities to only those people or those 

tasks authorized to use them. This has been attempted by 

such mechanisms as passwords, protection rings, and 

privileged instructions. Data security is becoming more 

important with th'i advent of government and corporate 

personal-data files. This problem is magnified if the 

computer system is available to many users via 

telecommunications. Given the above facilities for 

regulating computer facility use, access contron. is one 

mechanism that is available for preventing unauthorized 

access to data files. However, this mechanism fails when 

data is transmitted over telephone lines, radio links, or 

physical (mail or courier) shipments. Such cominunications 

are easily tapped without the legitimite user's knowledge, 

except for the case of a courier. Even more insidious than 

the traditional reading of sensitive data is the insertion 

of spurious data designed to confuse or misdirect the 

operation of a system. One mechanism for minimizing this 

problem is enciphering that data, which protects the data 

itself rather than the medium of transmitting the data. 

Enciphering is a process whereby  transformations  are 

made  on  the message  (cleartext),  usually on  a bit or 

MUMMMIM - .^MBM 
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character level. if the algorithm is known the cipher may 

be breakable by analyzing the ciphertext, particularly if 

sample cleartext for some of the ciphertext is available. 

Since an enciphering algorithm must be reversible to be 

useful, a key known by both the message oriqinacor and the 

intended receiver is also used. Thus if the key is 

intercepted or deduced the cipher is now cracked. The 

essence of successful cryptology is in devisinq an 

enciphering algorithm which is not possible to crack in the 

time-span of the messaqe's useful less, and in keepinq the 

key secret. 

Enciphering helps in preventing insertion of spurious 

adta to confuse a computer, as well as preventiny reading of 

secret data. This is because a random message inserted onto 

the communication link will probably decipher to 

unrecognizable yarbage. The algorithm implemented in this 

paper is so constructed that if one bit is changed in a 

legitimate enciphered message, the deciphered text will 

almost certainly be unrecoqnizable. Thin prevents the form 

of interference wherein a saboteur records (taps) the 

ciphertext, changes some bits randomly without even 

understanding the message, and inserts the text onto the 

telephone lines. Unrecognizable text can usuall" be 

rejected by the computer. There still remains the problem 

of the saboteur who records the ciphertext and replays it 

unchanged  later.   This  can  be  extremelv  damaqino   to 

^MMMM J 
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unrepeatable or irreversible processes. A method of 

avoiding this problem is message chaining, whereby a part of 

the previous data exchange is enciphered in this data 

exchange, as a verification field. Thus the same message 

replayed tomorrow would contain an out-of-o.jte VwrifiCAtlei 

field and be rejected. The operation of such a syntem is 

discussed at length in Smith's paper. 

Enciphering can also be used for computor-to-terminal 

corimunications. The terminal would contain a hardware 

deciphering module; the algorithm described here was 

designed with this purpose in mind. The user could have his 

key on a magnetic card, or he could type it in on the 

terminal. The computer would contain a central file of all 

users' keys and a software or hardware version of the 

enciphering module. 

Enciphering can add some security to online files 

against the possibility of random hardware or software 

failures or physical stealing of backup tapes, disk packs, 

etc. Enciphering in this application mere]" add3 another 

dimension of security. 

This paper details an enciphering algorithm developed 

by Feistel and Smith of IBM for comnuter-to-terminal 

conununications, A software version has been prepared, 

intended to be used as part of the input/output software or 

the network interface of Multics. A command to encipher and 

decipher online segments has also been written.  A proof of 
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the algorithm's reversibility is also given; this was hinted 

at but not proved in the Smith and Feistel papers. 

-- ■  
0^, i—^M—iMiin-,    i i,^J 
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traditional enciphering mechanisms of substitution of 

strings and modulo arithmetic on strinas. However, by 

repeated cycles, essentially a substitution is performed on 

not small chärartfirs but 128-bit blocks. Thus such methods 

as frequency analysis require computation time on the order 

of the lifetime of the universe. 

This algoriUhm, called Lucifer, has the added 

advantages of simple hardware implementation with 

shift-registers and easy reversibility. A general 

description of the algorithm follows and then a proof of 

its reversibility. 

The basic transformations used are one-to-one mappings 

and exclusive-ors (mod-2 addition). The input is divided 

into equal-sized blocks; each block is processed completely 

independently of the others. The following description 

refers to one block only. it is thus desirable fron a 

cryptographic point of view to use as largo a block size as 

possible, since the more bits which affect a given bit of 

ciphertext, the harder will be the job of the crvptanalyst. 

As mentioned before, a basic weakness in many ciphers is the 

small block size. 

A block is broken into the ton half and the bottom 

half. Without changing the bottom half, it is broken into 

easily manipulable units called bytes. Each byte undergoes 

one of two one-to-one transformations depending upon a hit 

of  the  key.   This  collection  of  transformed  byte:;  is 
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referred to as confused bytes, and the operation is referred 

to as confusion. Next, each bit of the confused bytes is 

modulo-2 summed with a different bit of the key. This 

operation is referred to as interruption. Now those bytes 

are modulo-2 summed with the top half of thu cleartext, the 

block previously unused. This is called diffusion. The two 

halves are swapped; this operation is called interchanqe. 

Sixteen such cycles occur. One complete 

cemfusion-interruption-diffusion cycle is called a CID 

cycle. The schedule for access'.ng key bits is so arranged 

that every key bit is used for both controlling the 

confusion transformation and for interruption. The 

interchange operation occurs on every cycle except the last. 

_ 
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Figure 1: Flowchart 
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page 15 

Figure  1  shows  a  flowchart of the operator.  Thus the 

algorithm consists of: 

Figure 2: Block Diagram 

The only difference between enciphering and deciphering 

is the order in which the key bits are accessed. Within CID 

cycle n during deciphering, key bits  are  accessed  in  the 

_________ A-  -- 
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same order as in CID cycle 15 - n in enciphering. These 

operations, explained in general here, are fullv detailed in 

Appendix A - Operation of the Lucifer Hardware. 

This leads to a simple proof of reversibility,  as 

explained in the next section. 

«MBMUu   
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A PROOF OF LUCIFER'S REVERSIBILITY 

Assume there are n + 1 CID cycles and thus n 

interchanges. Call output of the CID eye1 o n - 1 MO || M] 

(where MO is the first half of the message, Ml is the second 

half). Call the output of cycle n C0||ci. The double 

vertical bar represents concatenation. M0|| Ml is 

transformed in the following manner by cycle n, which is the 

last cycle (the first is numbered 0). Confusion: A 

transformation T (Ml? is applied. Which transformation 

depends on a bit of the key (one for each byte of Ml) but 

since the same key bits will be accessed for the same byte 

positions during deciphering the specific transformations 

selected is irrelevent, as long as they are all one-to-one. 

Interruption: T (Ml) is exclusive-ored with specific key 

bits KI. Diitusion: T (Ml) + KI is exclusive-ored with the 

top half. The total message is thus T (Ml) + KI + MO | | Ml. 

Remember that on cycle n no interchange occurs. On 

deciphering, this output will be fed into decipher cycle 0, 

which is the same as encipher cycle n. Since this cycle is 

exactly the same as the last encipher cycle, confusion and 

interruption will generate T (Ml) + KI just as before. When 

this is exclusive-ored with the top half consistinq of T 

(Ml) + KI + MO the original MO will be regenerated. 

Since the interchange before encipher cycle n occurs 

after decipher cycle 0, the output from the intorchanqo will 

^mm ■MM^MftflaHM -■ 
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also match. Thus the entire n - 1 interchance and n CID for 

encipher is equivalent to the 0 CID and 0 interchancje. 

Thus these cycles can now be effectively stripped off; the 

same proof is applied to a Lucifer consisting of n CID 

cycles and n - 1 interchanges. Eventually a Lucxfor •:r ono 

CID cycle and zero interchanges remain; this has alread" 

been demonstrated above to be reversible. 

In the actual specific operation of Lucifer, the 

diffusion operation does not consist of a simple 

exclusivo-or; instead the bits are permuted in a fixed 

fashion before diffusion. This does not affect the 

reversibility, since the ciphortext will undergo the same 

permutation and thus each cycle will regenerate the input of 

the corresponding encipher cycle. However, this permutation 

is necessary for the cipher to be difficult to break. It 

ensures that small differences, say a one-bit change, in a 

given message block will propagate throughout all the bits 

of that block of ciphertext. Each bit of clcartoxt 

potentially affects every bit of ciphertext, within a 

128-bit block. 

fe^aMMM MMMMtfe^—~-*MMMM 
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THE MULTICS SOFTWARE IMPLEMENTATION 

Two programs were written as iiTiplementations of the IDM 

hardware versions of Lucifer. One is a straightforward PL/I 

program which manipulates the bits in essentially the same 

fashion the hardware does. The other is a Multics assembly 

language program optimized for speed of execution. Details 

and lijwings of each may be found in the appendices. 

Instructions on using them are given here. 

First, a key must be supplied. This is done by calling 

the set_key entry: 

declare  lucifer_$set_key entry (bit (128)); 

call lucifer_$set_key (key); 

This entry saves the key in internal static. This key 

will be used for all future enciphering and deciphering 

until set^kcy is called again. 

To encipher: 

declare   lucifer_$encipher entry  (dimension  (*) 

bit  (128),  dimension (*) bit (128), fixed binary precision 

(35)); 

call  lucifer_$encipher  (cleartext,   ciphertcxt, 

code); 

The packed bit array, cleartext, is enciphered and 

deposited in the equal-sized array ciphertext. The code 

argument will be set to zero unless the dimensions of 

cleartext and ciphertext do not agree, in which  case  code 

MMMBMl ^ammmm 
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will be set to one and the enciphering not performed.  The 

ciphertext and cleartext may be the same variable. 

To decipher: 

call  lucifer_$decipher  (ciphertext,   cleartext, 

code); 

This entry is declared the same as encipher, and its 

operation is similar. 

One problem with this implementation is that Lucifer 

requires a 128-bit block to encipher each 128-bit block of 

the cleartext. If the cleartext is not a multiple of 123 

bits the last block could be padded with zeroes, but the 

output ciphertext corresponding to this block cannot be 

truncated. If it is information will be lost and it will 

not be deciphered correctly. This is because on decipher 

the truncated block will be padded to 128 bits (with zeroes, 

presumably) which is not identical to the original output of 

encipher before truncation. Therefore the primitive 

subroutines lucifer_$encipher and lucifer_$decinher require 

data to be passed in 128-bit blocks. 

To make this more palatable to Multics users (to whom 

data tends to come in multiples of 9-bit characters or 

36-bit words anyway) a command has been written to translate 

an entire segment.  To set the key, type: 

set_key -key- 

where -key- will be padded or truncated to 128 bits and is 

an octal string. 

■HHHMi MMMH» 
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To encipher a segment, type: 

encipher -cleartext- -ciphertext- 

The segment whose relative pathname is -cleartext- will be 

enciphered. If tht optional argument ciphertext- is not 

given the original segment will be overwritten; otherwise 

the ciphertext will be written onto the segment named 

-ciphertext-. 

The input will be padded to a mod 128 bit length with 

zeroes, and the output segment will be equal in length. 

Note that no additional pages can e'er be required by this 

padding, since a page is 36*1024 bits long, a multiple of 

128. 

To decipher, type: 

decipher -ciphertext- -cleartext- 

This command operates in the same way as encipher. Since 

the ciphertext segment must be a multiple of 128 bits long, 

exactly as produced by encipher, the output deciphered text 

will be exactly as long. This is because decipher has no 

way of knowing how long the original was. This can damage 

standard object segments which have significant worda 

expected to be found at the end of the seqnent. Note that a 

better version of this command would encipher the original 

cleartext length into the ciphertext segment. 

HMM mm ^MM 



■HMnnviawiwvwannw''   

Ar   EnciphCiTing  Module  for Multics paqe 2'. 

TIMING MEASUREMENTS AND CONCLUSIONS 

One of the important questions addressed by this paper 

is "Is it possible to take an algorithm designed  for easy 

hardware  implementation and efficiently  'ranslatc  it to 

software?".  Performance measurements by Feistel  slow  that 

the  Lucifer hardware module enciphered a 128-bit block in 

about 165 microseconds.  A version written in  360  assemblv 

langugage for the 360/67 i-»quired about 9 milliseconds.  The 

current Multics hardware, th. Honeywell model 6180, executes 

instructions  at  approximately  the  same  rate  as the IBM 

360/67.  The PL/I versior.. as expected, was  extremely slow 

and  required 10.4 seconds to encipher 72 blocks of 128 ijits 

each, or  144  milliseconds/block.  The assembly  language 

version   required   .4   seconds/72  blocks.   or  5.5 

milliseconds/block.  Multiplying by ten the number of blocks 

passed to  lucifer__ did not  substantially  reduce  the 

time/block, suggesting that 5.5 milliseconds represents real 

computation and not overhead.  Since Multics characters are 

nine bits  long,  Lucifer  requires  5.5  *  (9/128)  =  390 

microseconds  per  character enciphered.   Current!"  the 

Multics I/O system requires  about  100 microseconds per 

character for its processing; thus if T.ucifer were used for 

all  I/O a severe performance degradation could occur. 

However  this speed probably suffices for the occasional use 

to which it might be put. 

MM 
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There are some possibilities for further speed-un of 

the assembly language version; this is discussed in Appendix 

C. 

■MM ■■ mtmm HMfeM 
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Fiyure   3:   Bit Addresses  in Registers 

7 6 5 4 3 2 1 

7,0 6,0 5,0 4,0 3,0 2,0 1,0 0,0 

7,1 6,1 5,1 4,1 3,1 2,1 1.1 0,1 

7,2 6,2 5,2 4,2 3,2 2,2 1,2 *,2 

7,3 6,3 -,3 4,3 3,3 2,3 1,3 0,3 

7,4 6,4 5,4 4,4 3,4 2,4 1,4 0,4 

7,5 

7,0 

6,5 5,S 4,5 3,5 2,5 1,5 0,5 

6,6 5,6 4,6 3,6 2,6 1,6 0,G 

7,7 6,7 5,7 4,7 3,7 ,7 1,7 0,7 

0^ 
0 

1 

2 

3 

4 

C 

7 
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Note also that the author assumed that hiqh-order bits 

are transmitted first; the Smith paper does not specify 

tiiis. Thus bits arc first loaded into position 0 of the 

convolution registers (top half), then pcition 1, 2 etc. on 

to position 0 of the source registers (bottom half) . 

Each of the registers shown is connected as a circular 

shift-register. In addition, bits can be shifted from the 

convulution registers to the source registers and back for 

tiie interchange operation. 

A complete enciphering or decipiering operation for one 

128-bit      block       consists       of       sixteen 

confusion-interruption-diffusion   (CID)   cycles,  with ai 

interchange cycle in between each CID evele for a  total of 

15 interciiange cycles. 

At the start of a CID cycle, byte 0 of the key is 

copied into the transformation-control register. This 

register will supply eight bits for controlling the 

confusion operation; each bit will correspond with one byte 

of tiie source registers. 

A CID cycle consists of eight shifts of the source, 

convolution, and transformation-control register (TCR). The 

TCR siiifts vertically upward; other registers rotate 

horizontally, byte n going to byte mod (n - 1, 8). 

An individual shift of a CID cycle occurs as follows. 

Uyte 0 is taken from the source registers. It flows into 

the confusion box along with bit 0 of the TCP.  A one-to-one 

MM - ^M^M 
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transformation is applied to this byte, according to the bit 

from the TCR. The output from the confusion box is an 

eight-bit confused byte. Each bit of the confused byte is 

exclusive-ored with some bit of the convolution registers; 

note that no two bit positions are in the sane byte. Fach 

of these result bits is exclusive-ored with some bit of the 

rightmost byte of the key; this constitutes the interruption 

function. The result of this operation is stored in the bit 

position of the convolution registers to the right of the 

pair of exclusive-or gates. Note that diffusion occurs 

before interruption, but this is immaterial since mod 2 

addition is commutative. As the result bit is stored in the 

convolution registers, the convolution registers, source 

registers, and TCR undergo a shift. Thus the bit tnat 

previously was to the right of the exclusive-or gates in the 

convolution registers is not destroyed; it is shifted right, 

and the result of diffusion occupies its old position. 

These shifts are executed eight timeü for each CID 

cycle. In addition, during each shift the 16-byte key 

registers each rotate right one position with one exception: 

during the last shift of each CID cycle the kev register is 

not rotated during encipher; during decipher the key 

registers rotate two positions after the last shift. Thus 

seven key shifts occur per CID cycle on encipher and nine 

key shifts occur per CID cycle on decipher. This, coupled 

with an initial shift of nine positions before processing 

mmmmm^ 
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any  blocks,   constitutes  the only  difference between 

enciphering and deciphering. 

\   When eight shifts of one CID cycle  are  complete,  the 

source registers will  be back to their original position. 

The convolution registers are also restored except that each 

of its 64 bits has been exclusive-ored with exactly one key 

bit exclusive-ored with exactly one source bit.  This is 

guaranteed by the placing of the gates in a different byte 

position for each bit of  the confused byte.   The key 

registers have  been  rotated either  seven  times   (for 

encipher) or nine times (for decipher).  The TCR has yielded 

all  its bits.  An interchange cycle now occurs, unless this 

is  the  last CID cycle.   This  consists  of  connecting 

positions  0  anJ 7 of the source registers with positions 7 

and 0 of  the  convolution registers,  respectively;  oiaht 

shifts now occur.   This merely swaps the contents of the 

registers. 

Now the next CID cycle begins. A new key byte is 

fetched into the TCR. On CID cycle 1 this will be byte 7 

for encipher and byte 2 for decipher of the original key. 

It is important that the key bits be accessed in the 

reverse order (between CID cycles) when deciphering as 

compared to enciphering, but in the same order within each 

CID cycle. This is to ensure reversibility, as explained 

earlier. In addition, for cryptographic strength each bit 

of  the  key  should  be  accessed a^  equal number of times: 

.   .      . J._ 
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eight times for interruption and once for transformation 

control of one byte of the lource registers. The following 

method of accessing key bytes was thus devised. If there is 

to be an encipher, the key is initialized by loading it into 

the key registers. If a decipher is to be performed, the 

key registers are then rotated so that the first CID cycle 

will use bytes 9 to 0 rather than 0 to 7. After each CID 

cycle there will be no key shifts on encipher, but there 

will be two shifts durii g decipher.  This will cause the key 

Mki ■ - — -   -   
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bytes to be accessed as shown in table 1. 

Table 1: Key Byte Access Schedule 

paqe 31 

CID cycle encipher 

0 01234567 

1 7     8     9   10   11   12   13   14 

2 14   15     012345 

3 5     6     7     8     9   10   11   12 

4 12   13   14   15     0     1     2     3 

5 3456789   10 

6 10   11   12   13   14   15     0     1 

7 12345678 

8 8     9   10   11   12   13   14   15 

9 15     0123456 

10 6     7     8     9   10   11   12   13 

11 13  14   15     0     1     2     3     4 

12 4     5     6     7     8     9   10   11 

13 11  12   13   14   15     0     1     2 

14 23456789 

15 9   10   11   12   13   14   15     0 

decipher 

9   10   11   12   13   14   15     0 

23456789 

11 12   13   14   15     0     1     2 

4 5     6     7     8     9   10   11 

13 14   15     0     1     2     3     4 

6 7     8     9   10   11   12   13 

15     0123456 

8     9   10   11   12   13   14   15 

12345678 

10   11   12   13   14   15     0     1 

3456789   10 

12 13   14   15     0     1     2     3 

5 6     7     8     9   10   11   12 

14 15     0     1     2      3     4     5 

7 8     9   10   11   12   13   14 

0     12     3     4     5     6     7 

The byte of the key used for transformation control is 

in the left-hand column. Note that the decipher schedule is 

the Liame as the encipher schedule read upsidcdown, but 

within a CID cycle, read horizontally, bytes are accessofl in 

the same order. Also note that the key registers will be so 

positioned after sixteen  CID cycles  ready  for  the next 

.^^■■■aaBMa*. ^■i« 



■  ■ "   ■ ■ 

An Encinherino Modulo for Multics paqe 3.'' 

block:  in byte 0 for encipher, byte 9 for decipher. 

The exact nature of the confusion operation har5 not 

been explained yet. It is not important particularly what 

it is, as long as it is one-to-one and sufficiently random. 

It works as follows. Each byte to be confused (from the 

source registers) is split into two four-bit halves. If the 

key bit from the TCR for this byte is 1, the two halves are 

exchanged; otherwise no operation is performed. Next, each 

four-bit half undergoes a one-to-one mapping. The method in 

hardware used decoders, encoders, and permuted wires, but 

effectively a table look-up was done to associate with each 

of the sixteen bit combinations a unique four-bit 

replacement. The two mappings for the two halves are 

different; the one for the top half is cal^e i SO and the one 

for the bottom half is Si. Finally an 8-bit byte is 

generated by permutiig the eight wires irom these two 

mapping networks. The result of this entire confusion 

operation (and the way it is done in the software versions) 

is to consider the key bit concatenated with the source byte 

as a nine-bit index into a 512 element table. Each element 

is an eight-bit confused byte. This is explained in 

Appendix B, the PL/I implementation. 

-—- 
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Table 2: Four-bit Permutations 

input 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

so SI 

1100 0111 

1111 0010 

0111 1110 

1010 1001 

1110 0011 

1101 1011 

1011 0000 

0000 0100 

0010 1100 

0110 1101 

0011 0001 

0301 1010 

1001 0110 

0100 1111 

0101 1000 

1000 0101 

mm ^^ 
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APPENDIX D - THE PL/I IMPLEMENTATION 

The PL/I implementation is very similar to the hardware 

desiyn. However, instead of rotating data toward the low 

address end of each register, index values into fixed arrays 

are decremented and wrapped around to the high order end. 

Note very carefully that each byta shown in the hardware 

diagram, those bits arrayed vertically, are rows of 

two-dimensional arrays. Thus ..fa conventional PL/1 array 

is printed it will appear transposed as compared to the map 

of the registers. For consistencv within this document all 

arrays will be transposed from the conventional order so 

that they appear identical to the hardware bit orderinqs. 

Instead of doing 15 interchanges (unlike most other 

operations, a real movement of data occurs on interchange) 

16 are done. This last interchange is undone by copying the 

source registers first into the result block followed by the 

convolution registers. This is to avoid checking within the 

loop for the special case of the last execution. Similarly 

rather than skipping a key-shift cycle on encipher and 

performing an extra one on decipher each CID cycle, eiqht 

increments of the key index interruption_row are always 

performed. After a CID cycle is complete, a fixup variable 

either one or minus_one is added modulo IG to 

interruption row; this variable is -1 for encinher and 1 for 

decipher. 

HBSMMM m—M 
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The program operates as follows.  It copies the first 

half   of   a   given   128-bit   block   into    the 

convolution_reyisters;   the  second half  is  copied  into 

source_registers.  The  interchange_index loop  counts  the 

CID-interchange cycles, sixteen in number,  within that loon 

a CID cycle  is performed by assigning interruntion_row to 

ks_row, interruption_row shows which byte of the key will 

next be used for interruption, ks_row shows which byte will 

be used for transformation control.  This assignment is the 

equivalent  of copying the next byte of the key into the TCR 

at the start of a CID cycle.  Now the data_row  loops eight 

times,  once  for each byte in source_registers.  The entire 

confusion operation is implemented by a 512 byte Lable;  the 

first half for key bit » 0, the second half for key bit = 1. 

Thus  the confused byte is found by indexing this table with 

the key bit identified by ks_row and data_row  concatenated 

with  the  source  byte   identified by data_row.   Now 

convolution_index loops might  times, once for each  bit  in 

the  confused byte.  Note that this is all done in parallel 

in the hardware version and in the assembly language version 

described in Appendix C.  Each bit of the confused byte must 

be exclusive-ored with some bit of the key byte identified 

by  interruption_row.  Just as  the key interruption wires 

were permuted in the hardware, so key_table tells which bit 

of  that key byte is supplied for each bit of the confused 

byte.  This interrupted bit is now exclusive-ored with some 

rfMMBfli m—m 
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bit of the convolution registers. The register in which the 

bit lies which will be diffused (the one to the right of the 

exclusive-or gates) is the one corresponding to the source 

register from which the interrupted bit was derived. The 

number of this register, the column in the PL/I sense 

(althoug.' it is horizontal on the diagrams) is therefore 

convolution_index. The byte in which this bit lies is given 

by a table, convolution_table. These positions rotate right 

around the registers, one position for each shift of tlic CID 

cycle, once for each incrementing of data_row. Therefore 

the correct convolution_table entry for this bit of the 

interrupted byte must be mod-8 summed with data_row; this 

supplies the byte or row number of the target bit. 

After this byte is complete, interruption_row is 

incremented mod 16 to simulate rotating the kev registers 

once to the right. Now data_row is incremented to have the 

effect of rotating the source, convolution, and 

transformation-control registers. 

After the eight loops of data_row, interruption row 

must be readjusted to simulate only seven key shifts on 

encipher but nine shifts on decipher. As explained before, 

a fixup variable either_one_or_rainus_one is mod 16 add^d to 

interrupLion_row; this fixup variable is set at the entry 

points. The two entry points also set the initial 

interruption_row, either 0 for encipher or 9 for decipher. 

After sixteen  loops  of  interchange index,   sixteen 

——■!—!■!   
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CID-interchange pairs have been performed. «M block is now 

copied into the result field; the source registers are 

copied first to undo the effect of the extra interchange 

cycle. 

-   
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APPENDIX C - THL ASSEIIBLY LANGUACE IKPLEI^ENTATION 

The basic philosophy of the Multics assenbly lanquaqe 

version of Lucifer was to produce a program which could 

encipher or decipher at the highest speed. This does not 

contribute to the readibility of the program; therefore this 

explanation is quite detailed. If the reader is unfamiliar 

witii Multics assembly language, a short introduction is 

given in Appendix D, 

The set_key entry does more than store the key in 

internal static. During ciphering the key is used in two 

places: transformation control and interruption. For 

reasons explained later, each purpose requires the key to be 

in a different format for optimal operation. To avoid key 

manipulation duriny ciphering, set_key stores the key in two 

variables, key and explodGd_key. 

In exploded_key each bit of the key is given its own 

nine-bit byte. The high-order hit of each byte contains tho 

key bit; the low order eight bits are zero. This key is for 

transformation control. In the diagram below showing the 

storage assignment, the ordered ^air in each byte position 

gives the byte of the key number and the bit within the 

byte. As in the hardware diagrams adjacent bits of a byte 

are arrayed vertically, although it is more conventional to 

show memory words horizontally. Thus each byte  of  the key 
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requires two words; thirty-two words for 128 bits. 

Figure 5: Exploded Key Bit Assignment 

30  28  20  24  22  20  18  1Ü  14  12  10   8   G 

120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 

121 113 105 97 89 81 73 65 57 49 41 33 25 17 9 1 

122 114 106 98 90 82 74 66 58 50 42 34 26 18 10 2 

123 115 107 99 91 83 75 67 59 51 43 35 27 19 11 3 

124 116 108 100 92 84 76 68 60 52 44 3C 28 20 12 4 

125 117 109 101 93 85 77 69 61 53 45 37 29 21 13 5 

12G 118 110 102 94 86 78 70 62 54 40 38 30 22 14 6 

127 119 111 103 95 87 79 71 63 55 47 39 
1 

31 23 15 7 

For interruption, the key bits within a key byte are 

not accessed in the sane order as the confused byte's bits, 

0, 1, 2...7. Rather they are accessed 2, 5, 4, 0, 3, 1, 7, 

6 as given in key__table of the PL/I progran or as shown by 

the wiring of the hardware. To avoid the use of such a 

table and lookup time during ciphering, the key bytes are 

presorted by 3et_key. Lach 3-bit byte of tho key is stored 

ii> thj high order part of a Multics 9-hit byte, the 

remaining bit being zero.  Thus the storage assignment is as 
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shown in the diagram below. 

Fiyure 6: Key Bit Assiynment 

5   4   3   2   1 

0 

paqe 4 5 

4 0 12 8 4 0 

5 1 13 9 5 1 

6 2 14 10 6 2 

7 3 15 11 7 3 

<v 

i 

2 

3 

Words 0 and 1 are copied into words 4 and 5. This is 

to permit directly addressing eight bytes starting at any 

byte between 0 and 15 without programming a complicated 

wraparound routine. 

The basic idea underlying this program is to process 

all 64 bits of the source and convolution registers at once, 

each CID cycle. In order to do this, the key bits must be 

so arranged that each of its bits lies in the bit position 

corresponding to that of the source register bit with which 

it will be exclusive-orod during interruntion. This 

explains the rearranging above. 

When the encipher entry is called, it sets 

interruntion_rou (held in index register 2) to zero as in 

tiie PL/I program. Since an entire CID cycle is done in 

parallel, interruption_row will never be incremented along 

the horizontal line of the key byte access schedule given 

earlier. Instead it will be incremented each CID cycle to 

assume the values given in the schedule's left-hand column. 

Examining the schedule it can be seen that  interruption row 
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should thus be incremented by 7 for encipher and -7 for 

decipher, modulo IG. Thus each entry also sets the variable 

either_7_or_minu3_7 to the appropriate value. This is added 

to x2  mod 16 each CID cycle. 

After the argument extents are calculated and pointers 

to the strings fetched (bp -> input string, bb ^> output 

string), the main loop is entered. 

As in the PL/I program, the first 64 bits of each 

128-bit block are placed into convolution_registers, the 

next 64 into sourcc_reqisters. As with the key, each 8-bit 

byte is placed in the high order eight bits of a Multics 

9-bit byte. This unpacking is accomplished by unpack loop. 

This loop depends on the fact thut the assembler will assign 

source^registers a location after convolution registers 

because it is declared afterward. The low order (high 

address) bytes are unpacked first. 

Once this is complete, sixteen CID-interchange pairs 

are executed. 

First, the convol"tion registers are prepared for the 

diffusion operation. Referring to the hardware diagram, one 

can see that each bit of a confused, interrupted byto 

(vertically arrayed) corresponds to a different byte but the 

same bit (i.e., horizontal register) of the convolution 

registers. As seen in the PL/I program, if a source 

register bit has address [i, j] (byte i, bit j) the 

convolution register bit corresponding to it is 

mmtatm 
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[mod (i + convolution_table [j], 8), j] 

where convoluticn_table is [7, 6, 2, 1, 5, 0, 3, 4]. 

Instead of looping through each bit as the PL/I proqram 

does, the convolution registers are rotated so the bit 

positions for diffusions line up, correspondinq with those 

of the source registers. 

Since the horizontal registers are the bits to rotate, 

the bits to rotate are not adjacent. Thus the bit addresses 

within the two-word convolution_registers of each bit before 

rotation is as follows: 

Figure 7: Convolution Registers 

7 6 5 4 3 2 1 

63 54 45 36 27 18 ■ 9 0 0 

64 55 46 37 28 19 10 1 1 

65 56 47 38 29 20 1] 2 2 

66 57 48 39 30 21 12 3 3 

67 58 49 40 31 22 13 4 4 

68 59 50 41 32 23 14 5 5 
—! 

69 60 51 42 33 24 15 f. 6 

70 61 52 43 34 25 16 7 7 

Motice that bits 8, 17, 26... 71 do not anpear assigned 

on the matrix. This is due to the unpacking of each 8-bit 

byte to a 9-bit byte. The unassiyned offsets are those of 

the pad bits. The purpose of this rotation is to align 

all the cxclusive-or positions on the rioht edge of the 

matrix.  Looking at  the  hardware  schematic,  the  desired 
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6,0 5,0 4,0 3,0 2,0 1,0 0,0 7,0 

5,1 4,1 3,1 2,1 1,1 0,1 7,1 6,1 

1.2 0,2 7,2 6,2 5,2 4,2 3,2 2,2 

0,3 7,3 6,3 5,3 4,3 3,3 2,3 1,3 

4,4 3,4 2,4 1,4 0,4 7,4 6,4 5,4 

7,5 6,5 5,5 4,5 3,5 2,5 1,5 0,5 

2,6 1,6 0,6 7,6 6,6 5,6 4,6 3,6 

3,7 2,7 1,7 0,7 7,7 6,7 5,7 4,7 
_ . . . 
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position of each bit is as follows: 

Figure 8: Postrotation Convolution Registers 

7    6    5    4    3    2    1   0v^ 

0 

1 

2 

3 

4 

5 

6 

7 

This rotation is accomplished as follows. Row 0 (bits 

0, 9, 18... 63) must be rotated right on the diagram (left 

in the AQ register as it happens) seven positions or 6 3 

bits. Row 1 (bits 1, 10, 19... 64) must be rotated 6 

positions or 54 bits, etc. An array of masks, and_masks, 

has been prepared with a 1-bit in each bit position for a 

given register. They are ordered according to the number of 

positions of rotation needed. Since register 5 needs no 

rotation (because the exclusive-or gate is already in byte 

0), the mask for it occurs first. It consists of four 

zeroes, a one, eight zeroes, a one, eight zeroes... Thus, 

when convolution_registers is loaded into the AQ realster 

and is ANDed with this mask, only bits 5, 14, 23... 63 will 

remain. This register is rotated 0 bits loft and then ORed 

into a previously  zeroed doubleword,  named  "normalized". 
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.4ext, register 3 must be rotated left one position or nine 

bits. Thus the second mask has a one in bit 3 and a one 

every nine bits thereafter. After ANDinq the 

convolution_registers with this mask only bits 3, 12, 21... 

66 remain. The AQ is rotated left nine bits, and ORed into 

"normalized". 

There is a pointer to and_masks called and_masks_ptr. 

It is referenced by using the add-delta (AD) type indirect 

reference. When an indirect reference is made through this 

word, after completion of the specified operation the 

contents of the delta field (here 2) will be added to the 

address field. Thus the next time the AQ is ANDed the next 

doubleword mask will be used. Similarly an AD word controls 

the shift count. The first time through the loop the AQ 

must be shifted zero bits so the address field of this word 

contains zero. After every indirect reference the address 

field will be incremented by the delta field, here nine. 

Thus the rotate counts will be 0, 9, 18... 63. In addition 

this word is used to control the number of times the loop 

will execute. After an add-delta reference is made the 

tally field of the word is decremented by one; if it reaches 

zero the tally runout indicator is set. This tally field ir, 

sot to eight before beginninn the loop. Thus the loop will 

iterate eight times, due to the transfer-tall"-runout-flaq 

off instruction at the end. 

After  preparing  the  convolution  registers,  the 
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confusion operation is performed on the source registers. 

This is done by loading the source registers into the AQ and 

shifting right one bit position. Now each 8-bit byte 

appears right justified in each Multics 9-bit byte of the 

AQ. The AQ is now ORed with some doubleword of 

exploded key. Each bit of explodcd_key occupies the hiqh 

order bit of a 9-bit byte; thus eacl. bit to be used for 

transformation control now resides to the left of the 

corresponding byte of the source. 

The doubleword of exploded_key to use for 

transformation control is equal to the byte of the key 

addressed by interruption__row. This is because each byte of 

the key uses a doubleword of cxplodGd_koy, and because 

interruption row (in x2) always addresses the first byte of 

the key to use for interruption this CID cycle which is also 

the byte to use for transformation control. Sine" even the 

doubleword instructions address in v/ord indexes, 

interruption row must be doubled. This is done by adding it 

in twice, once in the epplb instruction and once in the oraq 

instruction itself. 

The AQ is stored and translated by the mvt instruction. 

The confusion table used here is iüentical to the one in the 

PL/I program, except that each 8-bit result byte is as usual 

left justified within a 9-bit byte. 

These confused bytes are now interrupted by 

exclusive-oring with the eight bytes of the key addressed by 
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intcrruption_row. Diffusion is obtained by exclusive-orinq 

with the prerotated convolution registers stored in 

"normalized". 

The interchange operation must, as well as swapping the 

source and convolution (now stored in "normalized"), 

unrotate the convolution registers to undo the effect of 

lining up the oxclusive-or gates described above. This is 

done via a very similar loop to rotate_loop. A 

subtract-delta modifier references through andjnasks ptr. 

Since this modifier subtracts delta before indirectina the 

masks will be used in the reverse order. The shift counts 

needed are shown below; the add-delta word for shifting 

aqain supplies loop control. 

Table 3: Convolution Register Rotation Counts 

Row      Pruvious Rotation  Post-Rotation 

0 72 

9 63 

18 54 

27 45 

36 36 

45 27 

53 18 

0 63 9 

The register accesses and rotate counts for the prerotating 

should be read down; for pnstroMt ion the table should be 

read up. 

■■ mm 
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After sixteen CID-interchange pairs, one more 

interchange has been done than desired. This is undone by 

swapping the two registers. The bytes are now packed into 

the result field. 

Some possibilities still exist for speedinn up this 

program. The two loops controlled by tally words onlv loop 

eight times; they could be exploded into eight copies. 

Since the address of and_masks and the rotate counts would 

in each copy be known at compile tine no indirect words 

would be needed. In addition the loop control instruction 

ttf would be eliminated. Counting ttf as two memory 

accesses and each of the tally references as one, four 

memory accesses could be saved each rotation. Since eight 

are required in t >op, and there are two loops, 64 memory 

accesses would be saved. Eight more would be saved by 

eliminating the tally word setup instructions at the 

beginning of each loop, for a total of 72. Since there are 

sixteen CID cycles a total of 72 times 16 = 115 2 memorv 

cycles might be saved. This may total as much as a 

millisecond, thus saving about twenty percent of the cipher 

time for a given block. This demonstrates how sensitive a 

program's performance can be to minor changes in coding 

style. Other experiments are suggested, such as completely 

rewriting the program with all arrays transposed (so that 

the bits of a byte arc not stored .sequentially) , or 

eliminating the padding bit on each byte. 
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APPENDIX D - INTRODUCTION TO MULTICS ASSEMBLER 

This section is intondod to be a quick introduction to 

the Honeywell model 6180 procesjor for those who are 

unfamiliar with its macnine language. 

The 6180 is a word-addressed machine with a 36-bit 

word; it also possesses some very powerful bit string and 

character string handling instructions. There are two major 

arithmetic registers of 36 bits each, the accumulator (A) 

and the quotient (Q) registers. These may be coupled to 

form a double length register, the AQ. Initructions ending 

in A, Q, or AQ operate on the corresponding realsters. 

There are in addition eight index registers of eiohteen 

bits each. Instructions ending in xN where N is an octal 

digit operate on these registers. Most index register 

instructions take a storage operand in the top half of a 

word, except for sxlN (store xN in lower half) and IxlN 

(load index N from lower half), 

There exist eight pointer registers for generatinn 

segment number - word number pairs. These registers contain 

a character offset and a bit offset from the addressed word 

for the use of character string and bit string instructions. 

The names of these registers (in numeric address order) are 

ap, ab, bp, bb. If), lb, sp and oh. The ap points to a 

procedure's argument list. The lp points to the procedure's 

linkage section where internal static variables  are  kept. 

MM 
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such as the key. The sp points at the stack frame, in which 

automatic variables are kept. Variables declared in a 

"temp" or "tempd" pseudoop are placed in the stack frame by 

the assembler and are given one or two words each 

respectively. A temp variable may also be qiven a subscript 

in which case it will be assigned that many words. 

Declaration in a temp or tenpd implies an sp reference. The 

other pointer registers are used for spare registers; for 

example, the bp points at the input string and the bb points 

at the output string. 

A sample instruction would be 

Idq      Ipjfoo 

This instruction will load the Q register with the  internal 

•static (because of the lp reference) variable foo. 

adq      15*8,dl 

will  add  12ü  to the-  Q register. The dl address modifier 

causes the address field  to  act  like  a memory operand, 

padded on the left with zeroes.  The du modifier pads on the 

right with zeroes. 

The following stranqe-looking multiword instructions 

are the special character string and bit string 

instructions; this en«? performs boolean operations on bit 

strings.  Mere a simple move is indicated. 

cs?.      (pJ^ql) , (pr.al) ,fill (0) ,bool (move) 

descb    bp|0,8 

descb    convolution,9 

mtkm 
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will move eight bits from the address bp|0+nl to a 9-bit 

field (padding with a zero bit) at convolution (plus 

implicit sp reference) + al. The offset modifiers ql and al 

refer to the bottom of the Q and A. 

mvt      (pr),(pr) 

desc9a   confused_bytes,8 

desc9a   confused_bytes,8 

arg      confusion_table+3-*,ic 

will translate,  the  eight  9-bit bytes at  confuscd_bytes 

(first  argument)  according to the table at confusion_table 

(third argument) and deposit the resultant eight 9-bit bytes 

in confuscd_bytes (second argument).  The lookup is done by 

treating each character as an index into the table. 

A list of most of the instructions used in Lucifer and 

their meaning follows. 

ada, q, XxN 

an? q, xN 

anaq 

arg 

cmpa, q, xu 

csl 

descb 

add to A, Q, xN 

and to A, Q, xN 

and to AQ (two wores) 

zero opcode (used for mvt table and 

constants) 

compare A, Q, xN 

combine bit strings left (three 

word instruction) 

a pseudoop which generates a bit 

string descriptor for a csl 
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dQSc9a 

eaa, X;J 

oppN 

era, q, aq, xN 

ersa, ersq 

Ida, (7, aq 

llr 

11s 

Irl 

IxlN 

mir 

mv t 

ora, q, aq 

orsa, q 

qls 

sba, q, xN 

s ta, q , aq 

stxN 

stz 

tmi 

tnz 

tpl 

instruction. 

generates a 9-bit character descriptor 

effective address to A (top half), xN 

effective pointer to pointer 

register N 

exclusive or A, Q, AQ, xIJ 

exclusive or A, Q to storage 

load A, Q, AQ 

long (AQ) left rotate 

long (AQ) left shift 

lonq (AQ) right logical shift 

load xN from lower half 

move character string left to righ- 

(three word instruction) 

move with translation 

(four word instruction) 

OR A, Q, AQ 

OR A, Q to storage 

Q left shift 

jubtract A, Q, xN 

store A, Q, AQ 

store xN 

store zero 

Lrsnsfer on minus 

transfer or r.ot Tiero 

transfer on plus (including zero) 

UMM 
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tra 

ttf 

unconditional transfer 

transfer tally-runout flag off 

Address modifiers appear after a comma in  an  address 

field.  For example 

Idq      bp|0,x2 

causes indexing by x2. 

XN 

* 

*xN or *N 

xN* or N* 

index by index register N 

indirect 

indirect then index (i.e., add 

index register to address in 

indirect word). 

index then indirect 

As well as xN index modification, the following can be 

used whenever xu appears above: 

au top of A 

al bottom of A 

qu top of Q 

ql bottom of Q 

ic instruction counter 

du direct to upper 

dl direct to lower 

—mm 
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The indirect and tally modifiers add-delta (AD) and 

subtract-delta (SD) take an indirect word. Add-delta 

causes, after the instruction is executed on the operand 

pointed to by the address field (bits 0 - 17; the operand 

lies in the sane segment as the AD word), the delta 

(rightmost six bits) to be added to the address field. The 

tally (bits 18 to 29) is decremented by one. If the tally 

reaches zero the tally-runout indicator is set, but no fault 

occurs. Subtract-delta, before executing the instruction, 

subtracts the delta from the address field and increments 

the tally by one. 
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